DÉVELOPPEMENTS LIMITÉS ET DIFFÉRENTIELLES : SOLUTIONS DES EXERCICES

Bernard Dupont

Bernard.Dupont@univ-lille1.fr

Exercice M.1

Enoncé

Calculer le développement limité au voisinage du point *a* et, si possible, au voisinage de 0, des fonctions suivantes à l'ordre demandé :

$$1. f(x) = e^x à 1'$$
 ordre 5

$$2. f(x) = \ln x$$
 à l'ordre 5

$$3.f(x) = \ln (1+x)$$
 à l'ordre 5 et à l'ordre 1

$$4. f(x) = \frac{1}{1+x}$$
 à l'ordre 5 puis à l'ordre 1

$$5. f(x) = \frac{1}{1-x}$$
 à l'ordre 5 puis à l'ordre 1

$$6. f(x) = (1 + x)^{\alpha}$$
 à l'ordre 5 puis à l'ordre 1

$$7. f(x) = \cos x$$
 à l'ordre 5

8.
$$f(x) = \sin x$$
 à l'ordre 5 puis à l'ordre 1

$$9. f(x) = \operatorname{tg} x \, \text{à l'ordre 5}$$

Solution

Toutes les questions impliquent la commande **series** de façon élémentaire. Quand le voisinage n'est pas précisé en option, il est sous-entendu que c'est **0**.

_1.

> series(exp(x),x=a); #DL à l'ordre 5 au voisinage de a series(exp(x),x); #DL à l'ordre 5 au voisinage de 0
$$e^{a} + e^{a}(x-a) + \frac{1}{2}e^{a}(x-a)^{2} + \frac{1}{6}e^{a}(x-a)^{3} + \frac{1}{24}e^{a}(x-a)^{4} + \frac{1}{120}e^{a}(x-a)^{5} + O((x-a)^{6})$$
$$1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{1}{24}x^{4} + \frac{1}{120}x^{5} + O(x^{6})$$

= 2.

> > series(log(x),x=a); #DL de la fonction logarithme au voisinage de a

$$\ln(a) + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \frac{1}{4a^4}(x-a)^4 + \frac{1}{5a^5}(x-a)^5 + O((x-a)^6)$$

<u></u>_3.

au voisinage de a series(log(1+h),h=a,2);#DL à l'ordre 1 de la fonction log(1+h) au voisinage de a series(log(1+h),h);#DL à l'ordre 5 de la fonction log(1+h) au voisinage de 0 series(log(1+h),h,2);#DL à l'ordre 1 de la fonction log(1+h) au voisinage de 0 $\ln(1+a) + \frac{1}{1+a} (h-a) - \frac{1}{2(1+a)^2} (h-a)^2 + \frac{1}{3(1+a)^3} (h-a)^3 - \frac{1}{4(1+a)^4} (h-a)^4 + \frac{1}{5(1+a)^5} (h-a)^5 + O((h-a)^6)$ $\ln(1+a) + \frac{1}{1+a} (h-a) + O((h-a)^2)$ $h - \frac{1}{2} h^2 + \frac{1}{3} h^3 - \frac{1}{4} h^4 + \frac{1}{5} h^5 + O(h^6)$

Le dernier output rappelle l'approximation bien connue : si h "petit", on a ln $(1+h) \approx h$. 4.

 $h + O(h^2)$

> series(1/(1+x),x=a); #DL à l'ordre 5 de la fonction 1/(1+x) au voisinage de a

series(1/(1+x), x=a, 2); #DL à l'ordre 1 de la fonction 1/(1+x) au voisinage de a

series(1/(1+x),x);#DL à l'ordre 5 de la fonction 1/(1+x) au voisinage de 0

series(1/(1+x),x,2); #DL à l'ordre 1 de la fonction 1/(1+x) au voisinage de 0

$$\frac{1}{1+a} - \frac{1}{(1+a)^2} (x-a) + \frac{1}{(1+a)^3} (x-a)^2 - \frac{1}{(1+a)^4} (x-a)^3 + \frac{1}{(1+a)^5} (x-a)^4 - \frac{1}{(1+a)^6} (x-a)^5 + O((x-a)^6)$$

$$\frac{1}{1+a} - \frac{1}{(1+a)^2} (x-a) + O((x-a)^2)$$

$$1 - x + x^2 - x^3 + x^4 - x^5 + O(x^6)$$

$$1 - x + O(x^2)$$

Si x "petit", on a $\frac{1}{1+x} \approx 1-x$.

> series(1/(1-x),x=a);#DL à l'ordre 5 de la fonction 1/(1-x) au
voisinage de a
series(1/(1-x),x=a,2);#DL à l'ordre 1 de la fonction 1/(1-x)
au voisinage de a

 $series(1/(1-x),x); \#DL \ allower 5 de la fonction 1/(1-x) au$ voisinage de 0 $series(1/(1-x),x,2);\#DL \ a \ l'ordre \ 1 \ de \ la \ fonction \ 1/(1-x) \ au$ $\frac{1}{1-a} - \frac{1}{(-1+a)(1-a)}(x-a) + \frac{1}{(-1+a)^2(1-a)}(x-a)^2$ $-\frac{1}{(-1+a)^3(1-a)}(x-a)^3 + \frac{1}{(-1+a)^4(1-a)}(x-a)^4$ $-\frac{1}{(-1+a)^5(1-a)}(x-a)^5 + O((x-a)^6)$ $\frac{1}{1-a} - \frac{1}{(-1+a)(1-a)}(x-a) + O((x-a)^2)$ $1 + x + x^2 + x^3 + x^4 + x^5 + O(x^6)$ $1 + x + O(x^2)$ Si x "petit", on a $\frac{1}{1-x} \approx 1 + x$. > series((1+x)^alpha,x=a); #DL à l'ordre 5 au voisinage de a series((1+x)^alpha,x=a,2); #DL à l'ordre 1 au voisinage de a series((1+x)^alpha,x); #DL à l'ordre 5 au voisinage de 0 series((1+x)^alpha,x,2); #DL à l'ordre 1 au voisinage de 0 $(1+a)^{\alpha} + \frac{(1+a)^{\alpha}\alpha}{1+a}(x-a) + \frac{1}{2}\frac{(1+a)^{\alpha}\alpha(\alpha-1)}{(1+a)^2}(x-a)^2$ $+\frac{1}{6} \frac{(1+a)^{\alpha} \alpha (\alpha-1) (\alpha-2)}{(1+a)^{3}} (x-a)^{3}$ $+\frac{1}{24}\frac{(1+a)^{\alpha}\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{(1+a)^{4}}(x-a)^{4}$ $+ \frac{1}{120} \frac{(1+a)^{\alpha} \alpha (\alpha-1) (\alpha-2) (\alpha-3) (\alpha-4)}{(1+a)^{5}} (x-a)^{5} + O((x-a)^{6})$ $(1+a)^{\alpha} + \frac{(1+a)^{\alpha} \alpha}{1+a} (x-a) + O((x-a)^2)$ $1 + \alpha x + \frac{1}{2} \alpha (\alpha - 1) x^2 + \frac{1}{6} \alpha (\alpha - 1) (\alpha - 2) x^3 + \frac{1}{24} \alpha (\alpha - 1) (\alpha - 2) (\alpha$ $(-3) x^4 + \frac{1}{120} \alpha (\alpha - 1) (\alpha - 2) (\alpha - 3) (\alpha - 4) x^5 + O(x^6)$ $1 + \alpha x + O(x^2)$ LSi x "petit", on a $(1+x)^{\alpha} \approx 1 + \alpha x$. series(cos(x),x=a); #DL de la fonction cosinus à l'ordre 5 au voisinage de a
series(cos(x),x); #DL de la fonction cosinus à l'ordre 5 au
voisinage de 0

$$\cos(a) - \sin(a) (x - a) - \frac{1}{2} \cos(a) (x - a)^2 + \frac{1}{6} \sin(a) (x - a)^3 + \frac{1}{24} \cos(a) (x - a)^4 - \frac{1}{120} \sin(a) (x - a)^5 + O((x - a)^6)$$

 $1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 + O(x^6)$

<u>8</u>.

> series(sin(x),x=a); #DL de la fonction cosinus à l'ordre 5 au voisinage de a

series(sin(x),x=a,2); #DL de la fonction cosinus à l'ordre 1 au voisinage de a

series($\sin(x)$,x); #DL de la fonction cosinus à l'ordre 5 au voisinage de 0

series($\sin(x)$,x,2); #DL de la fonction cosinus à l'ordre 1 au voisinage de 0

$$\sin(a) + \cos(a) (x - a) - \frac{1}{2} \sin(a) (x - a)^{2} - \frac{1}{6} \cos(a) (x - a)^{3} + \frac{1}{24} \sin(a) (x - a)^{4} + \frac{1}{120} \cos(a) (x - a)^{5} + O((x - a)^{6})$$

$$\sin(a) + \cos(a) (x - a) + O((x - a)^{2})$$

$$x - \frac{1}{6} x^{3} + \frac{1}{120} x^{5} + O(x^{6})$$

$$x + O(x^{3})$$

Si x "petit", on a sin $x \approx x$.

).

> series(tan(x),x=a); #DL de la fonction tangente à l'ordre 5 au voisinage de a

series(tan(x),x); #DL de la fonction tangente à l'ordre 5 au voisinage de a

$$\tan(a) + \left(1 + \tan(a)^2\right)(x - a) + \tan(a)\left(1 + \tan(a)^2\right)(x - a)^2 + \left(\frac{4}{3}\tan(a)^2 + \tan(a)^4 + \frac{1}{3}\right)(x - a)^3 + \left(\frac{5}{3}\tan(a)^3 + \tan(a)^5 + \frac{2}{3}\tan(a)\right)(x - a)^4 + \left(2\tan(a)^4 + \tan(a)^6 + \frac{17}{15}\tan(a)^2 + \frac{2}{15}\right)(x - a)^5 + O((x - a)^6)$$

$$x + \frac{1}{2}x^3 + \frac{2}{15}x^5 + O(x^6)$$

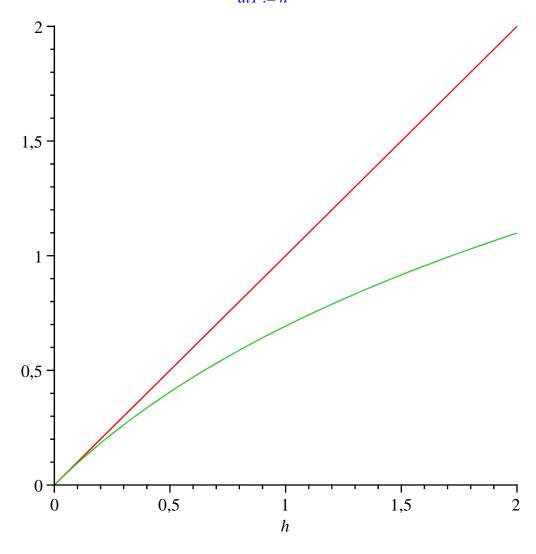
▼ Exercice M.2

Enoncé

En économie, on érige l'approximation $\ln(1+h) \approx h$ en quasi-dogme. Ainsi, le logarithme d'un indice d'une grandeur statistique serait automatiquement son taux de croissance. Montrez graphiquement qu'il s'agit bien d'une approximation et non d'une égalité.

Solution

Manifestement, le graphique suivant montre qu'il ne faut pas confondre $\ln (1 + h)$ et h quand la variable économique étudiée connaît des taux de croissance supérieurs à 20%.



Exercice E.1

Enoncé

Appliquez la fonction-procédure de calcul d'une différentielle exposée dans la section **Différentielle** aux situations microéconomiques suivantes.

- 1. La fonction d'utilité générique U = U(c), puis la fonction d'utilité spécifique $U = \frac{c^{\alpha}}{\alpha 1}$
- 2. La fonction de production générique à une variable (le travail) Q = F(L), puis la fonction de

production particulière $Q = L^{\frac{2}{3}}$.

3. La fonction de coût total générique C = C(Q), puis la fonction de coût particulière $C = 3 O^3 + 5 O^2 - 10 O + 25$.

Solution

Rappelons la fonction-procédure de calcul d'une différentielle d'une fonction quelconque f au point a.

> restart;

Dy:=(f,a,dx)->D(f)(a)*dx;

$$Dy:=(f,a,dx) \to D(f)(a) dx$$
 (3.1)

_II ne reste plus qu'à l'appliquer aux notions microéconomiques.

1. Pour toute quantité donnée de consommation c, l'accroissement de consommation dc va se traduire par la variation d'utilité dU:

$$> dU:=Dy(U,c,dc);$$

$$dU := D(U)(c) dc (3.2)$$

Pour la fonction d'utilité $U = \frac{c^{\alpha}}{\alpha - 1}$, on aura :

> U:=c->c^alpha/(alpha-1);
simplify(dU);

$$U := c \to \frac{c^{\alpha}}{\alpha - 1}$$

$$\frac{c^{\alpha - 1} \alpha \, dc}{\alpha - 1}$$
(3.3)

 $\lfloor 2$. Pour un volume d'emploi L donné, l'accroissement dL amènera la variation dQ du volume produit :

$$> dQ:=Dy(F,L,dL);$$

$$dQ := D(F)(L) dL (3.4)$$

Pour la fonction de production $Q = L^{\frac{3}{3}}$, on aura :

> F:=L->L^(2/3); dQ;

$$F := L \to L^{2/3}$$

$$\frac{2}{3} \frac{dL}{L^{1/3}}$$
(3.5)

3. Pour un volume de production Q donné, l'accroissement dQ amènera la variation dC du coût total .

> dQ:='dQ';#il faut libérer dQ de l'assignation faite dans la question précédente dC:=Dy(C,Q,dQ);

$$dQ := dQ$$

$$dC := D(C)(Q) dQ$$
(3.6)

Pour la fonction de coût $C = 3 Q^3 + 5 Q^2 - 10 Q + 25$, on aura :

$$C := Q - 3*Q^3 + 5*Q^2 - 10*Q + 25;$$

$$dC;$$

$$C := Q \rightarrow 3 Q^3 + 5 Q^2 - 10 Q + 25$$

$$(9 Q^2 + 10 Q - 10) dQ$$
(3.7)